Next generation whole genome sequencing of Plasmodium falciparum using NextSeq500 technology in India
نویسندگان
چکیده
Plasmodium falciparum is a protozoan parasite that causes the deadliest form of human malaria. Although, malaria burdens worldwide have decreased substantially over the last decade (WHO, 2014), genetic variation and adaptation by parasite strains against drugs and vaccines present significant challenges for the elimination of malaria (Ariey et al., 2014; Neafsey et al., 2015). India has formally launched a malaria elimination campaign (NVBDCP, 2016). Therefore, early in-country detection of drug resistance and/or immune evasion will be important for the program. Presently, the majority of surveillance methods in India detect a limited number of known polymorphisms (Campino et al., 2011; Chatterjee et al., 2016; Daniels et al., 2008; Mishra et al., 2015; Neafsey et al., 2012; Neafsey et al., 2008). A recently reported amplicon sequencing method enables targeted re-sequencing of a panel of genes (Rao et al., 2016). However, the capacity to identify new genes of resistance/immune evasion by whole genome sequencing (WGS) through next generation sequencing (NGS) in India, has remained elusive. Here we report the first WGS of P. falciparum strain performed by Eurofins Genomics India Pvt. Ltd at its Bengaluru division within 40 days of sample submission. Our data establish that timely, commercial WGS through NGS in India can be applied to P. falciparum to greatly empower the malaria elimination agenda in India. not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was . http://dx.doi.org/10.1101/068676 doi: bioRxiv preprint first posted online Aug. 16, 2016;
منابع مشابه
I-37: Establishing High Resolution Genomic Profiles of Single Cells Using Microarray and Next-Generation Sequencing Technologies
The nature and pace of genome mutation is largely unknown. Standard methods to investigate DNA-mutation rely on arraying or sequencing DNA from a population of cells, hence the genetic composition of individual cells is lost and de novo mutation in cell(s) is concealed within the bulk signal. We developed methods based on (SNP-) arraying and next-generation sequencing of single-cell whole-genom...
متن کاملStrategies and Clinical Applications of Next Generation Sequencing
Abstract DNA sequencing is one of the great valuable techniques in molecular biology, which can be used to detect the sequence of nucleotides in a DNA fragment. The high-throughput sequencing known as Next Generation Sequencing (NGS) revolutionized genomic research and molecular biology; therefore, the whole human genome can be sequenced with a low cost in several days. NGS technology is simi...
متن کاملGenome Wide Association Studies, Next Generation Sequencing and Their Application in Animal Breeding and Genetics: A Review
Recently genetic studies have been revolutionized by next generation sequencing (NGS) technology, and it is expected that the use of this technology will largely eliminate defects in the methods of association studies. The NGS technology is becoming the premier tool in genetics. However, at the moment the use of this method is limited especially in the livestock due to high cost and computation...
متن کاملStrategies and Clinical Applications of Next Generation Sequencing
Abstract DNA sequencing is one of the great valuable techniques in molecular biology, which can be used to detect the sequence of nucleotides in a DNA fragment. The high-throughput sequencing known as Next Generation Sequencing (NGS) revolutionized genomic research and molecular biology; therefore, the whole human genome can be sequenced with a low cost in several days. NGS technology is simi...
متن کاملComplete telomere-to-telomere de novo assembly of the Plasmodium falciparum genome through long-read (>11 kb), single molecule, real-time sequencing
The application of next-generation sequencing to estimate genetic diversity of Plasmodium falciparum, the most lethal malaria parasite, has proved challenging due to the skewed AT-richness [∼80.6% (A + T)] of its genome and the lack of technology to assemble highly polymorphic subtelomeric regions that contain clonally variant, multigene virulence families (Ex: var and rifin). To address this, ...
متن کامل